metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C22×S3)⋊C8, C22⋊C8⋊1S3, C3⋊1(C23⋊C8), C2.5(D6⋊C8), C22.3(S3×C8), (C2×C12).438D4, (C2×C4).107D12, C6.3(C22⋊C8), C6.4(C23⋊C4), (S3×C23).1C4, C23.45(C4×S3), (C22×C4).17D6, (C2×C6).1M4(2), C6.2(C4.D4), C12.55D4⋊20C2, C22.3(C8⋊S3), C22.32(D6⋊C4), (C22×Dic3).1C4, C2.1(C12.46D4), C2.1(C23.6D6), (C22×C12).322C22, (C2×C6).1(C2×C8), (C3×C22⋊C8)⋊1C2, (C2×D6⋊C4).21C2, (C22×C6).26(C2×C4), (C2×C4).209(C3⋊D4), (C2×C6).40(C22⋊C4), SmallGroup(192,27)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C22×S3)⋊C8
G = < a,b,c,d,e | a2=b2=c3=d2=e8=1, eae-1=ab=ba, ac=ca, ede-1=ad=da, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec >
Subgroups: 368 in 98 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C2×C8, C22×C4, C22×C4, C24, C3⋊C8, C24, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C3⋊C8, D6⋊C4, C2×C24, C22×Dic3, C22×C12, S3×C23, C23⋊C8, C12.55D4, C3×C22⋊C8, C2×D6⋊C4, (C22×S3)⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C22⋊C4, C2×C8, M4(2), C4×S3, D12, C3⋊D4, C22⋊C8, C23⋊C4, C4.D4, S3×C8, C8⋊S3, D6⋊C4, C23⋊C8, C23.6D6, D6⋊C8, C12.46D4, (C22×S3)⋊C8
(1 5)(2 25)(3 7)(4 27)(6 29)(8 31)(9 47)(10 14)(11 41)(12 16)(13 43)(15 45)(17 33)(18 22)(19 35)(20 24)(21 37)(23 39)(26 30)(28 32)(34 38)(36 40)(42 46)(44 48)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)
(1 16 24)(2 9 17)(3 10 18)(4 11 19)(5 12 20)(6 13 21)(7 14 22)(8 15 23)(25 47 33)(26 48 34)(27 41 35)(28 42 36)(29 43 37)(30 44 38)(31 45 39)(32 46 40)
(1 28)(2 25)(4 8)(5 32)(6 29)(9 33)(10 18)(11 23)(12 40)(13 37)(14 22)(15 19)(16 36)(17 47)(20 46)(21 43)(24 42)(27 31)(34 48)(35 45)(38 44)(39 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,5)(2,25)(3,7)(4,27)(6,29)(8,31)(9,47)(10,14)(11,41)(12,16)(13,43)(15,45)(17,33)(18,22)(19,35)(20,24)(21,37)(23,39)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36), (1,16,24)(2,9,17)(3,10,18)(4,11,19)(5,12,20)(6,13,21)(7,14,22)(8,15,23)(25,47,33)(26,48,34)(27,41,35)(28,42,36)(29,43,37)(30,44,38)(31,45,39)(32,46,40), (1,28)(2,25)(4,8)(5,32)(6,29)(9,33)(10,18)(11,23)(12,40)(13,37)(14,22)(15,19)(16,36)(17,47)(20,46)(21,43)(24,42)(27,31)(34,48)(35,45)(38,44)(39,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,5)(2,25)(3,7)(4,27)(6,29)(8,31)(9,47)(10,14)(11,41)(12,16)(13,43)(15,45)(17,33)(18,22)(19,35)(20,24)(21,37)(23,39)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36), (1,16,24)(2,9,17)(3,10,18)(4,11,19)(5,12,20)(6,13,21)(7,14,22)(8,15,23)(25,47,33)(26,48,34)(27,41,35)(28,42,36)(29,43,37)(30,44,38)(31,45,39)(32,46,40), (1,28)(2,25)(4,8)(5,32)(6,29)(9,33)(10,18)(11,23)(12,40)(13,37)(14,22)(15,19)(16,36)(17,47)(20,46)(21,43)(24,42)(27,31)(34,48)(35,45)(38,44)(39,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,5),(2,25),(3,7),(4,27),(6,29),(8,31),(9,47),(10,14),(11,41),(12,16),(13,43),(15,45),(17,33),(18,22),(19,35),(20,24),(21,37),(23,39),(26,30),(28,32),(34,38),(36,40),(42,46),(44,48)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36)], [(1,16,24),(2,9,17),(3,10,18),(4,11,19),(5,12,20),(6,13,21),(7,14,22),(8,15,23),(25,47,33),(26,48,34),(27,41,35),(28,42,36),(29,43,37),(30,44,38),(31,45,39),(32,46,40)], [(1,28),(2,25),(4,8),(5,32),(6,29),(9,33),(10,18),(11,23),(12,40),(13,37),(14,22),(15,19),(16,36),(17,47),(20,46),(21,43),(24,42),(27,31),(34,48),(35,45),(38,44),(39,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 12A | 12B | 12C | 12D | 12E | 12F | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | S3 | D4 | D6 | M4(2) | D12 | C3⋊D4 | C4×S3 | S3×C8 | C8⋊S3 | C23⋊C4 | C4.D4 | C23.6D6 | C12.46D4 |
kernel | (C22×S3)⋊C8 | C12.55D4 | C3×C22⋊C8 | C2×D6⋊C4 | C22×Dic3 | S3×C23 | C22×S3 | C22⋊C8 | C2×C12 | C22×C4 | C2×C6 | C2×C4 | C2×C4 | C23 | C22 | C22 | C6 | C6 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 |
Matrix representation of (C22×S3)⋊C8 ►in GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
29 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
22 | 1 | 0 | 0 | 0 | 0 |
54 | 51 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 66 | 14 | 0 | 0 |
0 | 0 | 59 | 7 | 0 | 0 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,29,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[22,54,0,0,0,0,1,51,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0] >;
(C22×S3)⋊C8 in GAP, Magma, Sage, TeX
(C_2^2\times S_3)\rtimes C_8
% in TeX
G:=Group("(C2^2xS3):C8");
// GroupNames label
G:=SmallGroup(192,27);
// by ID
G=gap.SmallGroup(192,27);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,100,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^2=e^8=1,e*a*e^-1=a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c>;
// generators/relations