Copied to
clipboard

G = (C22×S3)⋊C8order 192 = 26·3

The semidirect product of C22×S3 and C8 acting via C8/C2=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C22×S3)⋊C8, C22⋊C81S3, C31(C23⋊C8), C2.5(D6⋊C8), C22.3(S3×C8), (C2×C12).438D4, (C2×C4).107D12, C6.3(C22⋊C8), C6.4(C23⋊C4), (S3×C23).1C4, C23.45(C4×S3), (C22×C4).17D6, (C2×C6).1M4(2), C6.2(C4.D4), C12.55D420C2, C22.3(C8⋊S3), C22.32(D6⋊C4), (C22×Dic3).1C4, C2.1(C12.46D4), C2.1(C23.6D6), (C22×C12).322C22, (C2×C6).1(C2×C8), (C3×C22⋊C8)⋊1C2, (C2×D6⋊C4).21C2, (C22×C6).26(C2×C4), (C2×C4).209(C3⋊D4), (C2×C6).40(C22⋊C4), SmallGroup(192,27)

Series: Derived Chief Lower central Upper central

C1C2×C6 — (C22×S3)⋊C8
C1C3C6C2×C6C2×C12C22×C12C2×D6⋊C4 — (C22×S3)⋊C8
C3C6C2×C6 — (C22×S3)⋊C8
C1C22C22×C4C22⋊C8

Generators and relations for (C22×S3)⋊C8
 G = < a,b,c,d,e | a2=b2=c3=d2=e8=1, eae-1=ab=ba, ac=ca, ede-1=ad=da, bc=cb, bd=db, be=eb, dcd=c-1, ce=ec >

Subgroups: 368 in 98 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C2×C8, C22×C4, C22×C4, C24, C3⋊C8, C24, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×S3, C22×C6, C22⋊C8, C22⋊C8, C2×C22⋊C4, C2×C3⋊C8, D6⋊C4, C2×C24, C22×Dic3, C22×C12, S3×C23, C23⋊C8, C12.55D4, C3×C22⋊C8, C2×D6⋊C4, (C22×S3)⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, D6, C22⋊C4, C2×C8, M4(2), C4×S3, D12, C3⋊D4, C22⋊C8, C23⋊C4, C4.D4, S3×C8, C8⋊S3, D6⋊C4, C23⋊C8, C23.6D6, D6⋊C8, C12.46D4, (C22×S3)⋊C8

Smallest permutation representation of (C22×S3)⋊C8
On 48 points
Generators in S48
(1 5)(2 25)(3 7)(4 27)(6 29)(8 31)(9 47)(10 14)(11 41)(12 16)(13 43)(15 45)(17 33)(18 22)(19 35)(20 24)(21 37)(23 39)(26 30)(28 32)(34 38)(36 40)(42 46)(44 48)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 43)(10 44)(11 45)(12 46)(13 47)(14 48)(15 41)(16 42)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)
(1 16 24)(2 9 17)(3 10 18)(4 11 19)(5 12 20)(6 13 21)(7 14 22)(8 15 23)(25 47 33)(26 48 34)(27 41 35)(28 42 36)(29 43 37)(30 44 38)(31 45 39)(32 46 40)
(1 28)(2 25)(4 8)(5 32)(6 29)(9 33)(10 18)(11 23)(12 40)(13 37)(14 22)(15 19)(16 36)(17 47)(20 46)(21 43)(24 42)(27 31)(34 48)(35 45)(38 44)(39 41)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,5)(2,25)(3,7)(4,27)(6,29)(8,31)(9,47)(10,14)(11,41)(12,16)(13,43)(15,45)(17,33)(18,22)(19,35)(20,24)(21,37)(23,39)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36), (1,16,24)(2,9,17)(3,10,18)(4,11,19)(5,12,20)(6,13,21)(7,14,22)(8,15,23)(25,47,33)(26,48,34)(27,41,35)(28,42,36)(29,43,37)(30,44,38)(31,45,39)(32,46,40), (1,28)(2,25)(4,8)(5,32)(6,29)(9,33)(10,18)(11,23)(12,40)(13,37)(14,22)(15,19)(16,36)(17,47)(20,46)(21,43)(24,42)(27,31)(34,48)(35,45)(38,44)(39,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,5)(2,25)(3,7)(4,27)(6,29)(8,31)(9,47)(10,14)(11,41)(12,16)(13,43)(15,45)(17,33)(18,22)(19,35)(20,24)(21,37)(23,39)(26,30)(28,32)(34,38)(36,40)(42,46)(44,48), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,43)(10,44)(11,45)(12,46)(13,47)(14,48)(15,41)(16,42)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36), (1,16,24)(2,9,17)(3,10,18)(4,11,19)(5,12,20)(6,13,21)(7,14,22)(8,15,23)(25,47,33)(26,48,34)(27,41,35)(28,42,36)(29,43,37)(30,44,38)(31,45,39)(32,46,40), (1,28)(2,25)(4,8)(5,32)(6,29)(9,33)(10,18)(11,23)(12,40)(13,37)(14,22)(15,19)(16,36)(17,47)(20,46)(21,43)(24,42)(27,31)(34,48)(35,45)(38,44)(39,41), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,5),(2,25),(3,7),(4,27),(6,29),(8,31),(9,47),(10,14),(11,41),(12,16),(13,43),(15,45),(17,33),(18,22),(19,35),(20,24),(21,37),(23,39),(26,30),(28,32),(34,38),(36,40),(42,46),(44,48)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,43),(10,44),(11,45),(12,46),(13,47),(14,48),(15,41),(16,42),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36)], [(1,16,24),(2,9,17),(3,10,18),(4,11,19),(5,12,20),(6,13,21),(7,14,22),(8,15,23),(25,47,33),(26,48,34),(27,41,35),(28,42,36),(29,43,37),(30,44,38),(31,45,39),(32,46,40)], [(1,28),(2,25),(4,8),(5,32),(6,29),(9,33),(10,18),(11,23),(12,40),(13,37),(14,22),(15,19),(16,36),(17,47),(20,46),(21,43),(24,42),(27,31),(34,48),(35,45),(38,44),(39,41)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D12E12F24A···24H
order122222223444444666668888888812121212121224···24
size1111221212222221212222444444121212122222444···4

42 irreducible representations

dim11111112222222224444
type+++++++++++
imageC1C2C2C2C4C4C8S3D4D6M4(2)D12C3⋊D4C4×S3S3×C8C8⋊S3C23⋊C4C4.D4C23.6D6C12.46D4
kernel(C22×S3)⋊C8C12.55D4C3×C22⋊C8C2×D6⋊C4C22×Dic3S3×C23C22×S3C22⋊C8C2×C12C22×C4C2×C6C2×C4C2×C4C23C22C22C6C6C2C2
# reps11112281212222441122

Matrix representation of (C22×S3)⋊C8 in GL6(𝔽73)

7200000
0720000
0072000
0007200
000010
000001
,
100000
010000
0072000
0007200
0000720
0000072
,
100000
010000
0072100
0072000
0000721
0000720
,
100000
29720000
000100
001000
000001
000010
,
2210000
54510000
000010
000001
00661400
0059700

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,29,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[22,54,0,0,0,0,1,51,0,0,0,0,0,0,0,0,66,59,0,0,0,0,14,7,0,0,1,0,0,0,0,0,0,1,0,0] >;

(C22×S3)⋊C8 in GAP, Magma, Sage, TeX

(C_2^2\times S_3)\rtimes C_8
% in TeX

G:=Group("(C2^2xS3):C8");
// GroupNames label

G:=SmallGroup(192,27);
// by ID

G=gap.SmallGroup(192,27);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,141,36,758,100,570,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^2=e^8=1,e*a*e^-1=a*b=b*a,a*c=c*a,e*d*e^-1=a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,c*e=e*c>;
// generators/relations

׿
×
𝔽